Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 965
Filtrar
1.
FEBS Lett ; 597(21): 2687-2698, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726177

RESUMO

A large conformational heterogeneity of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with various human diseases, has been observed to occur in the catalytic site of the enzyme. Here, we report the X-ray structure of NQO1 with phenylmethylsulfonyl fluoride (PMSF) at 1.6 Å resolution. Activity assays confirmed that, despite being covalently bound to the Tyr128 residue at the catalytic site, PMSF did not abolish NQO1 activity. This may indicate that the PMSF molecule does not reduce the high flexibility of Tyr128, thus allowing NADH and DCPIP substrates to bind to the enzyme. Our results show that targeting Tyr128, a key residue in NQO1 function, with small covalently bound molecules could possibly not be a good drug discovery strategy to inhibit this enzyme.


Assuntos
NAD(P)H Desidrogenase (Quinona) , Neoplasias , Humanos , Domínio Catalítico , NAD(P)H Desidrogenase (Quinona)/química , Fluoreto de Fenilmetilsulfonil
2.
Braz. j. oral sci ; 22: e230883, Jan.-Dec. 2023. ilus
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1399769

RESUMO

Phenylmethylsulfonyl fluoride (PMSF) is a protease inhibitor widely used in research, but fluoride is released during its action and this knowledge has been neglected in dental research. Aim: to evaluate if fluoride released by salivary protease action on PMSF affects enamel remineralization and fluoride uptake. Methods: Groups of 10 enamel slabs, with caries-like lesions and known surface hardness (SH), were subjected to one of the following treatment groups: Stimulated human saliva (SHS), negative control; SHS containing 1.0 µg F/mL (NaF), positive control; and SHS containing 10, 50 or 100 µM PMSF. The slabs were subjected to a pH-cycling regimen consisting of 22 h/day in each treatment solution and 2 h/day in a demineralizing solution. After 12 days, SH was again measured to calculate the percentage of surface hardness recovery (%SHR), followed by enamel fluoride uptake determination. The time-related fluoride release from 100.0 µM PMSF by SHS action was also determined. Data were analyzed by ANOVA followed by Newman-Keuls test. Results: The release of fluoride from PMSF by SHS was rapid, reaching a maximum value after 10 min. Fluoride released from PMSF was more effective in enhancing %SHR and increasing fluoride uptake in enamel compared with SHS alone (p < 0.05); furthermore, it was equivalent to the positive control (p > 0.05). Conclusion: In conclusion, fluoride released by saliva from PMSF is available to react with enamel and needs to be taken into account in research using this protease inhibitor


Assuntos
Fluoreto de Fenilmetilsulfonil , Inibidores de Proteases , Remineralização Dentária , Esmalte Dentário
3.
World J Microbiol Biotechnol ; 38(12): 241, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36271946

RESUMO

Vibrio mimicus is a bacterium that causes gastroenteritis in humans. This pathogen produces an enterotoxic hemolysin called V. mimicus hemolysin (VMH), which is secreted extracellularly as an inactive 80-kDa protoxin and converted to a 66-kDa mature toxin through cleavage between Arg151 and Ser152. The 56-kDa serine protease termed V. mimicus trypsin-like protease (VmtA) is known to mediate this maturating process. However, some strains including strain ES-20 does not possess the vmtA gene. In the present study, the vmtA-negative strains were found to have a replaced gene that encodes a 43-kDa (403 aa) precursor of a serine protease designated by VmtX (V. mimicus trypsin-like protease X). To examine whether VmtX is also involved in the maturation of VMH, VmtX was isolated from the culture supernatant of V. mimicus strain NRE-20, a metalloprotease-negative mutant constructed from strain ES-20. Concretely, the culture supernatant was fractionated with 70% saturated ammonium sulfate and subjected to affinity column chromatography using a HiTrap Benzamidine FF column. The analysis of the N-terminal amino acid sequences of the proteins in the obtained VmtX preparation indicated that the 39-kDa protein was active VmtX consisting of 371 aa (Ile33-Ser403). The VmtX preparation was found to activate pro-VMH through generation of the 66-kDa protein. Additionally, treatment of the VmtX preparation with serine protease inhibitors, such as leupeptin and phenylmethylsulfonyl fluoride, significantly suppressed the activities to hydrolyze the specific peptide substrate and to synthesize the 66-kDa toxin. These findings indicate that VmtX is the second protease that mediats the maturation of VMH.


Assuntos
Proteínas Hemolisinas , Vibrio , Humanos , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Peptídeo Hidrolases/genética , Leupeptinas , Sulfato de Amônio , Tripsina , Fluoreto de Fenilmetilsulfonil , Metaloproteases , Inibidores de Serino Proteinase , Benzamidinas , Vibrio/metabolismo
4.
Toxins (Basel) ; 14(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136547

RESUMO

Lecithin-dependent thermolabile hemolysin (LDH) is a virulence factor excreted by Vibrio parahaemolyticus, a marine bacterium that causes important losses in shrimp farming. In this study, the function of LDH was investigated through its inhibition by metal ions (Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Cu2+) and chemical modification reagents: ß-mercaptoethanol (ßME), phenylmethylsulfonyl fluoride (PMSF) and diethyl pyrocarbonate (DEPC). LDH was expressed in the Escherichia coli strain BL-21, purified under denaturing conditions, and the enzymatic activity was evaluated. Cu2+, Ni2+, Co2+ and Ca2+ at 1 mmol/L inhibited the LDH esterase activity by 20−95%, while Mg2+ and Mn2+ slightly increased its activity. Additionally, PMSF and DEPC at 1 mmol/L inhibited the enzymatic activity by 40% and 80%, respectively. Dose-response analysis showed that DEPC was the best-evaluated inhibitor (IC50 = 0.082 mmol/L), followed by Cu2+ > Co2+ > Ni2+ and PMSF (IC50 = 0.146−1.5 mmol/L). Multiple sequence alignment of LDH of V. parahaemolyticus against other Vibrio species showed that LDH has well-conserved GDSL and SGNH motifs, characteristic of the hydrolase/esterase superfamily. Additionally, the homology model showed that the conserved catalytic triad His-Ser-Asp was in the LDH active site. Our results showed that the enzymatic activity of LDH from V. parahaemolyticus was modulated by metal ions and chemical modification, which could be related to the interaction with catalytic amino acid residues such as Ser153 and/or His 393.


Assuntos
Proteínas Hemolisinas , Vibrio parahaemolyticus , Aminoácidos , Dietil Pirocarbonato , Escherichia coli/metabolismo , Esterases , Proteínas Hemolisinas/metabolismo , Hidrolases , Indicadores e Reagentes , Íons , Lecitinas , Mercaptoetanol , Fluoreto de Fenilmetilsulfonil , Vibrio parahaemolyticus/metabolismo , Fatores de Virulência
5.
Biochem Biophys Res Commun ; 630: 57-63, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36148729

RESUMO

The 2.6 Å crystal structure of the apo form of Hip1 (hydrolase important for pathogenesis) has been previously reported. However, very little is known about the active site architecture of this M. tuberculosis (Mtb), serine hydrolase drug target. To begin mapping the active site of Hip1, we cocrystallized Hip1 with the irreversible serine protease inhibitor, 4-(2-aminoethyl)-benzenesulfonylfluoride (AEBSF). We chose AEBSF for cocrystallization with Hip1 since the similar inhibitor, phenylmethylsulfonyl fluoride (PMSF), interestingly exhibited no activity against Hip1. We obtained crystals that diffracted to 2.1 Å but to our bewilderment, we did not observe any electron density for the inhibitor in the omit map for the Hip1-AEBSF complex. Rather, in the active site, dehydroalanine (dAla) was found to occupy the expected position of the catalytic Ser228, thus yielding anhydrohip1. Here we present a comparative analysis of the crystal structures of anhydrohip1 and Hip1 and provide a mechanism for the conversion of the enzyme to the anhydro-form through reaction with AEBSF. With the aid of molecular docking, we propose an explanation for the differential inhibition of Hip1 by AEBSF and PMSF. We also present a preliminary definition of the S1 and S2 pockets of the protease's active site and propose a mechanism for a ligand-induced conformational change within the S2 pocket. Finally, we expand upon the previous demarcation of the putative lipid binding pocket in the α-domain of the enzyme. We believe that this detailed analysis of the structures of anhydrohip1 and Hip1 provides valuable information useful for the structure-based drug design of novel Hip1-directed Mtb therapeutics.


Assuntos
Mycobacterium tuberculosis , Cristalografia por Raios X , Ligantes , Lipídeos , Simulação de Acoplamento Molecular , Fluoreto de Fenilmetilsulfonil , Serina , Serina Proteases/metabolismo , Inibidores de Serino Proteinase , Sulfonas
6.
Prep Biochem Biotechnol ; 52(9): 1008-1018, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35000560

RESUMO

A novel thrombolytic enzyme was produced by food grade microorganism Neurospora crassa using agro-industrial by-products as substrates. Process parameters were optimized using Plackett-Berman and Box-Benhken design. Under the optimized fermentation conditions, high fibrinolytic activity of 403.59 U/mL was obtained. It was purified with a specific activity of 3572.4 U/mg by ammonium sulfate precipitation and SP Sepharose chromatography. The molecular weight of the enzyme was approximately 32 kDa. It exhibited maximum activity at 40 °C and pH 7.4. Its activity was enhanced by Cu2+, Na+, Zn2+, and completely inhibited by phenylmethanesulfonyl fluoride, soybean trypsin inhibitor, aprotinin, which indicates it could be a serine protease. The enzyme could degrade fibrin clot directly without the need of plasminogen activator, and effectively cleaved Aα, Bß, γ chains of fibrinogen. It could inhibit the formation of blood clots in vitro and acts as an anticoagulant. Compared to heparin the purified enzyme showed extended anticoagulant activity. Blood clots were dissolved effectively and dissolution rate was increased with time. Based on these results, this novel enzyme has the potential to be developed as a thrombolytic agent.


Assuntos
Neurospora crassa , Trombose , Sulfato de Amônio , Anticoagulantes/farmacologia , Aprotinina , Fibrina , Fibrinogênio/metabolismo , Fibrinolíticos/química , Heparina , Concentração de Íons de Hidrogênio , Peso Molecular , Neurospora crassa/metabolismo , Fluoreto de Fenilmetilsulfonil , Ativadores de Plasminogênio , Serina Endopeptidases , Serina Proteases , Temperatura , Inibidores da Tripsina
7.
Environ Toxicol Chem ; 40(1): 148-161, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33045099

RESUMO

The activity of a trout liver S9 substrate depletion assay has been shown to decline over time, presumably due to proteolytic degradation of biotransformation enzymes. To address this problem, assay performance was evaluated following the addition of phenylmethylsulfonyl fluoride (PMSF) or a general-purpose protease inhibitor cocktail to liver homogenization buffers and/or S9 reaction mixtures. Addition of PMSF to liver homogenization buffers and/or S9 reaction mixtures had little or no effect on clearance of phenanthrene, a model cytochrome P450 substrate, in short-term (25 or 30 min) depletion experiments but resulted in significant improvements in retention of this initial activity over time. The protease inhibitor cocktail strongly inhibited initial activity when added to homogenization buffers or reaction mixtures. Taking into consideration potential effects on liver carboxylesterases, the treatment approach determined to be optimal was addition of 10 µM PMSF to the S9 reaction mixture. Addition of 10 µM PMSF to the mixture resulted in significantly higher rates of phenanthrene clearance in 2-h incubations relative to those obtained in the absence of PMSF and a 6-fold increase in the working lifetime of the preparation. The results of a statistical power analysis suggest that by increasing the working lifetime of the assay, addition of PMSF to the reaction mixture could result in substantially improved detection of low in vitro clearance rates when compared to current practice. These findings demonstrate the value of adding PMSF to the trout S9 preparation and may have broad implications for use of this assay to support chemical bioaccumulation assessments for fish. Environ Toxicol Chem 2021;40:148-161. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Oncorhynchus mykiss , Animais , Biotransformação , Fígado/metabolismo , Taxa de Depuração Metabólica , Fluoreto de Fenilmetilsulfonil/metabolismo
8.
FEBS Lett ; 595(3): 379-388, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33263189

RESUMO

The tobacco variant Nicotiana benthamiana has recently emerged as a versatile host for the manufacturing of protein therapeutics, but the fidelity of many recombinant proteins generated in this system is compromised by inadvertent proteolysis. Previous studies have revealed that the anti-HIV-1 antibodies 2F5 and PG9 as well as the protease inhibitor α1 -antitrypsin (A1AT) are particularly susceptible to N. benthamiana proteases. Here, we identify two subtilisin-like serine proteases (NbSBT1 and NbSBT2) whose combined action is sufficient to account for all major cleavage events observed upon expression of 2F5, PG9 and A1AT in N. benthamiana. We propose that downregulation of NbSBT1 and NbSBT2 activities could constitute a powerful means to optimize the performance of this promising platform for the production of biopharmaceuticals. DATABASES: NbSBT sequence data are available in the DDBJ/EMBL/GenBank databases under the accession numbers MN534996 to MN535005.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Proteínas de Plantas/antagonistas & inibidores , Subtilisinas/antagonistas & inibidores , alfa 1-Antitripsina/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Clorometilcetonas de Aminoácidos/farmacologia , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Expressão Gênica , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Fluoreto de Fenilmetilsulfonil/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Inibidores de Proteases/farmacologia , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Subtilisinas/genética , Subtilisinas/metabolismo , /enzimologia , alfa 1-Antitripsina/biossíntese , alfa 1-Antitripsina/genética
9.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630529

RESUMO

The aggregation of α-synuclein (α-Syn) is a characteristic of Parkinson's disease (PD). α-Syn oligomerization/aggregation is accelerated by the serine peptidase, prolyl oligopeptidase (POP). Factors that affect POP conformation, including most of its inhibitors and an impairing mutation in its active site, influence the acceleration of α-Syn aggregation resulting from the interaction of these proteins. It is noteworthy, however, that α-Syn is not cleaved by POP. Prolyl endopeptidase-like (PREPL) protein is structurally related to the serine peptidases belonging to the POP family. Based on the α-Syn-POP studies and knowing that PREPL may contribute to the regulation of synaptic vesicle exocytosis, when this protein can encounter α-Syn, we investigated the α-Syn-PREPL interaction. The binding of these two human proteins was observed with an apparent affinity constant of about 5.7 µM and, as in the α-Syn assays with POP, the presence of PREPL accelerated the oligomerization/aggregation events, with no α-Syn cleavage. Furthermore, despite this lack of hydrolytic cleavage, the serine peptidase active site inhibitor phenylmethylsulfonyl fluoride (PMSF) abolished the enhancement of the α-Syn aggregation by PREPL. Therefore, given the attention to POP inhibitors as potential drugs to treat synucleinopathies, the present data point to PREPL as another potential target to be explored for this purpose.


Assuntos
Fluoreto de Fenilmetilsulfonil/farmacologia , Prolil Oligopeptidases/antagonistas & inibidores , Inibidores de Proteases/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Humanos , Prolil Oligopeptidases/química , Prolil Oligopeptidases/metabolismo , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
10.
Appl Environ Microbiol ; 86(12)2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32303545

RESUMO

Carboxylesterase PytH, isolated from the pyrethroid-degrading bacterium Sphingobium faniae JZ-2, could rapidly hydrolyze the ester bond of a wide range of pyrethroid pesticides, including permethrin, fenpropathrin, cypermethrin, fenvalerate, deltamethrin, cyhalothrin, and bifenthrin. To elucidate the catalytic mechanism of PytH, we report here the crystal structures of PytH with bifenthrin (BIF) and phenylmethylsulfonyl fluoride (PMSF) and two PytH mutants. Though PytH shares low sequence identity with reported α/ß-hydrolase fold proteins, the typical triad catalytic center with Ser-His-Asp triad (Ser78, His230, and Asp202) is present and vital for the hydrolase activity. However, no contact was found between Ser78 and His230 in the structures we solved, which may be due to the fact that the PytH structures we determined are in their inactive or low-activity forms. The structure of PytH is composed of a core domain and a lid domain; some hydrophobic amino acid residues surrounding the substrate from both domains form a deeper and wider hydrophobic pocket than its homologous structures. This indicates that the larger hydrophobic pocket makes PytH fit for its larger substrate binding; both lid and core domains are involved in substrate binding, and the lid domain-induced core domain movement may make the active center correctly positioned with substrates.IMPORTANCE Pyrethroid pesticides are widely applied in agriculture and household; however, extensive use of these pesticides also causes serious environmental and health problems. The hydrolysis of pyrethroids by carboxylesterases is the major pathway of microbial degradation of pyrethroids, but the structure of carboxylesterases and its catalytic mechanism are still unknown. Carboxylesterase PytH from Sphingobium faniae JZ-2 could effectively hydrolyze a wide range of pyrethroid pesticides. The crystal structures of PytH are solved in this study. This showed that PytH belongs to the α/ß-hydrolase fold proteins with typical catalytic Ser-His-Asp triad, though PytH has a low sequence identity (about 20%) with them. The special large hydrophobic binding pocket enabled PytH to bind bigger pyrethroid family substrates. Our structures shed light on the substrate selectivity and the future application of PytH and deepen our understanding of α/ß-hydrolase members.


Assuntos
Proteínas de Bactérias/genética , Hidrolases de Éster Carboxílico/genética , Inseticidas/metabolismo , Fluoreto de Fenilmetilsulfonil/metabolismo , Piretrinas/metabolismo , Sphingomonadaceae/genética , Proteínas de Bactérias/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Análise de Sequência de DNA , Sphingomonadaceae/metabolismo
11.
J Oleo Sci ; 69(3): 241-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32115548

RESUMO

Aspergillus terreus was chosen for production of alkaline protease using solid-state fermentation (SSF). The maximum enzyme yield reached about 34.87 U/mg protein after optimization of fermentation parameters. The produced alkaline protease was purified by precipitation with iso-propanol and then purified through gel filtration and ion exchange column chromatography with a yield of 53.58% and 5.09- fold purification. The enzyme has shown to have a molecular weight of 35 kDa. Optimal pH and temperature for the enzyme activity were 9.5 and 50°C respectively. The highest activity was reported towards casein, with an apparent Km value of 6.66 mg/mL and Vmax was 30 U/mL. The enzyme activity was greatly repressed by phenylmethylsulfonyl fluoride (PMSF). Sodium dodecyl sulfate (SDS) caused activation in enzyme activity. The enzyme retained about 83.8, 70.6, 74.5, 76.4 and 66.4% of its original activity after incubation with Aerial, Leader, Oxi, Persil and Tide, respectively for 8 h at 60°C. Adding of the enzyme in detergents improved the cleansing performance to the blood stains and suggested to be used as a detergent additive. Our outcomes showed that protease could be used as environment green-approach in dehairing process.


Assuntos
Aspergillus/metabolismo , Detergentes , Fermentação , Serina Endopeptidases , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fluoreto de Fenilmetilsulfonil/farmacologia , Serina Endopeptidases/isolamento & purificação , Serina Endopeptidases/metabolismo , Dodecilsulfato de Sódio/farmacologia , Temperatura
12.
Int J Biol Macromol ; 145: 594-603, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31891703

RESUMO

Bacillus licheniformis W10 is a strain of biocontrol bacteria that was obtained from plant rhizosphere screening. In this study, we purified, identified, and carried out bioinformatics analysis of the W10 antifungal protein from Bacillus licheniformis. Mass spectrometry analysis was carried out by passing the antifungal protein through a high-resolution time-of-flight mass spectrometer. Mascot searches of the tandem mass spectrometry data identified this antifungal protein as a serine protease, and the 1347 bp gene encoding this protein was cloned. Bioinformatics analysis of this protein indicated that it contains 448 amino acid residues, has a molecular weight of 48,794.16 Da and an isoelectric point of 6.04, and is a hydrophilic protein. In the secondary and tertiary structure of this protein, the proportion of α-helices and ß-folds is similar, and the protein possesses a Peptidase_S8 conserved domain. Using BApNA as a substrate, it was found that the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF) can inhibit the W10 antifungal protein. PMSF concurrently reduced the inhibitory effects of the antifungal protein on Botrytis cinerea, showing that the W10 antifungal protein possesses serine protease activity. The W10 antifungal protein has good thermal stability. The study implies potential of this enzyme for biocontrol of fungal plant pathogens.


Assuntos
Antifúngicos/química , Bacillus licheniformis/química , Proteínas de Bactérias/química , Serina Proteases/química , Sequência de Aminoácidos/genética , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Bacillus licheniformis/enzimologia , Bacillus licheniformis/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/farmacologia , Espectrometria de Massas , Peso Molecular , Fluoreto de Fenilmetilsulfonil/farmacologia , Serina Proteases/genética , Serina Proteases/isolamento & purificação , Inibidores de Serino Proteinase/farmacologia
13.
Bioelectromagnetics ; 41(2): 113-120, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31872912

RESUMO

Ultrasound has been applied for varied purposes as it provides additional mechanical energy to a system, and is still profitable and straightforward, which are advantages for industrial applications. In this work, ultrasonic treatments were applied to purified collagenase fractions from a fermented extract by Aspergillus terreus UCP 1276 aiming to evaluate the potential effect on collagen hydrolysis. The physical agent was evaluated as an inductor of collagen degradation and consequently as a producer of peptides with anticoagulant activity. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis analyses were also carried out to compare the hydrolysis techniques. The ultrasound (40 kHz, 47.4 W/L) processing was conducted under the same conditions of pH and temperature at different times. The ultrasound-assisted reaction was accelerated in relation to conventional processing. Collagenolytic activity was enhanced and tested in the presence of phenylmethanesulfonyl fluoride inhibitor. Underexposure, the activity was enhanced, reaching more than 72.0% of improvement in relation to the non-exposed enzyme. A period of 30 min of incubation under ultrasound exposure was enough to efficiently produce peptides with biological activity, including anticoagulation and effect on prothrombin time at about 60%. The results indicate that low-frequency ultrasound is an enzymatic inducer with likely commercial applicability accelerating the enzymatic reaction. Bioelectromagnetics. 2020;41:113-120. © 2019 Bioelectromagnetics Society.


Assuntos
Anticoagulantes/farmacologia , Aspergillus/enzimologia , Colágeno/química , Colagenases/metabolismo , Peptídeos/química , Anticoagulantes/química , Catálise , Colágeno/metabolismo , Colagenases/química , Colagenases/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Fermentação , Humanos , Hidrólise , Peptídeos/farmacologia , Fluoreto de Fenilmetilsulfonil/química , Fluoreto de Fenilmetilsulfonil/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Hidrolisados de Proteína/química , Ultrassom/métodos
14.
Mol Plant Pathol ; 21(2): 147-159, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31769595

RESUMO

Acremonium strictum elicitor subtilisin (AsES) is a 34-kDa serine-protease secreted by the strawberry fungal pathogen A. strictum. On AsES perception, a set of defence reactions is induced, both locally and systemically, in a wide variety of plant species and against pathogens of alternative lifestyles. However, it is not clear whether AsES proteolytic activity is required for triggering a defence response or if the protein itself acts as an elicitor. To investigate the necessity of the protease activity to activate the defence response, AsES coding sequences of the wild-type gene and a mutant on the active site (S226A) were cloned and expressed in Escherichia coli. Our data show that pretreatment of Arabidopsis plants with inactive proteins, i.e. inhibited with phenylmethylsulphonyl fluoride (PMSF) and mutant, resulted in an increased systemic resistance to Botrytis cinerea and expression of defence-related genes in a temporal manner that mimics the effect already reported for the native AsES protein. The data presented in this study indicate that the defence-eliciting property exhibited by AsES is not associated with its proteolytic activity. Moreover, the enhanced expression of some immune marker genes, seedling growth inhibition and the involvement of the co-receptor BAK1 observed in plants treated with AsES suggests that AsES is being recognized as a pathogen-associated molecular pattern by a leucine-rich repeat receptor. The understanding of the mechanism of action of AsES will contribute to the development of new breeding strategies to confer durable resistance in plants.


Assuntos
Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas Fúngicas/metabolismo , Subtilisina/metabolismo , Botrytis/patogenicidade , Proteínas Fúngicas/genética , Fluoreto de Fenilmetilsulfonil/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Subtilisina/genética
15.
Chem Biol Interact ; 310: 108715, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31226285

RESUMO

Although the three-dimensional structures of mouse and Torpedo californica acetylcholinesterase are very similar, their responses to the covalent sulfonylating agents benzenesulfonyl fluoride and phenylmethylsulfonyl fluoride are qualitatively different. Both agents inhibit the mouse enzyme effectively by covalent modification of its active-site serine. In contrast, whereas the Torpedo enzyme is effectively inhibited by benzenesulfonyl fluoride, it is almost completely resistant to phenylmethylsulfonyl fluoride. A bottleneck midway down the active-site gorge in both enzymes restricts access of ligands to the active site at the bottom of the gorge. Molecular dynamics simulations revealed that the mouse enzyme is substantially more flexible than the Torpedo enzyme, suggesting that enhanced 'breathing motions' of the mouse enzyme relative to the Torpedo enzyme may explain why phenylmethylsulfonyl fluoride can reach the active site in mouse acetylcholinesterase, but not in the Torpedo enzyme. Accordingly, we performed docking of the two sulfonylating agents to the two enzymes, followed by molecular dynamics simulations. Whereas benzenesulfonyl fluoride closely approaches the active-site serine in both mouse and Torpedo acetylcholinesterase in such simulations, phenylmethylsulfonyl fluoride is able to approach the active-site serine of mouse acetylcholinesterase, but remains trapped above the bottleneck in the Torpedo enzyme. Our studies demonstrate that reliance on docking tools in drug design can produce misleading information. Docking studies should, therefore, also be complemented by molecular dynamics simulations in selection of lead compounds. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:CHEMBIOINT:2.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Desenho de Fármacos , Simulação de Dinâmica Molecular , Animais , Benzenossulfonatos/metabolismo , Domínio Catalítico , Fluoretos/metabolismo , Humanos , Camundongos/metabolismo , Simulação de Acoplamento Molecular , Fluoreto de Fenilmetilsulfonil/metabolismo , Especificidade da Espécie , Torpedo/metabolismo
16.
J Appl Microbiol ; 127(3): 670-682, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31165532

RESUMO

AIMS: Experiments were designed to determine the effects of different chemical inhibitors of lysozyme and peptidases on rumen protozoa and the associated prokaryotes, and in vitro fermentation using Entodinium caudatum as a model protozoan species. METHODS AND RESULTS: Imidazole (a lysozyme inhibitor), phenylmethylsulphonyl fluoride (PMSF, a serine peptidase inhibitor) and iodoacetamide (IOD, a cysteine peptidase inhibitor) were evaluated in vitro both individually and in two- and three-way combinations using E. caudatum monocultures with respect to their ability to inhibit the protozoan and their effect on feed digestion, fermentation and the microbiota. All the three inhibitors, both individually and in combination, decreased E. caudatum counts (P < 0·001), and IOD and its combinations with the other inhibitors significantly (P < 0·01) decreased ammonia concentration, with the two- and three-way combinations showing additive effective. Feed digestion was not affected, but fermentation and microbial diversity were affected mostly by PMSF, IOD and their combinatorial treatments potentially due to the overgrowth of Streptococcus luteciae accompanying with the disappearance of host ciliates. CONCLUSIONS: Entodinium caudatum depends on lysozyme and peptidase for digestion and utilization of the engulfed microbes and specific inhibition of these enzymes can inhibition E. caudatum without adversely affecting feed digestion or fermentation even though they changed the microbiota composition in the cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The peptidase inhibitors may have the potential to be used in controlling rumen protozoa to improve ruminal nitrogen utilization efficiency.


Assuntos
Cilióforos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Muramidase/antagonistas & inibidores , Inibidores de Proteases/farmacologia , Amônia/metabolismo , Animais , Cilióforos/enzimologia , Cilióforos/crescimento & desenvolvimento , Cilióforos/microbiologia , Digestão/efeitos dos fármacos , Fermentação/efeitos dos fármacos , Imidazóis/farmacologia , Iodoacetamida/farmacologia , Microbiota/efeitos dos fármacos , Fluoreto de Fenilmetilsulfonil/farmacologia , Rúmen/parasitologia
17.
Mol Reprod Dev ; 86(7): 751-761, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31074040

RESUMO

Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium-sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3-phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H-89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.


Assuntos
Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Capacitação Espermática/fisiologia , Espermatozoides/metabolismo , Sus scrofa/metabolismo , Tirosina/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Indazóis/farmacologia , Isoquinolinas/farmacologia , Masculino , Naftalenos/farmacologia , Fluoreto de Fenilmetilsulfonil/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil/antagonistas & inibidores , Receptores de Detecção de Cálcio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Sulfonamidas/farmacologia
18.
Biochemistry ; 58(7): 930-939, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30676743

RESUMO

Binding of small inhibitory compounds to human cytochrome P450 3A4 (CYP3A4) could interfere with drug metabolism and lead to drug-drug interactions, the underlying mechanism of which is not fully understood due to insufficient structural information. This study investigated the interaction of recombinant CYP3A4 with a nonspecific inhibitor metyrapone, antifungal drug fluconazole, and protease inhibitor phenylmethanesulfonyl fluoride (PMSF). Metyrapone and fluconazole are classic type II ligands that inhibit CYP3A4 with medium strength by ligating to the heme iron, whereas PMSF, lacking the heme-ligating moiety, acts as a weak type I ligand and inhibitor of CYP3A4. High-resolution crystal structures revealed that the orientation of metyrapone is similar but not identical to that in the previously reported 1W0G model, whereas the flexible fluconazole adapts a conformer markedly different from that observed in the target CYP51 enzymes, which could explain its high potential for cross-reactivity. Besides hydrophobic and aromatic interactions with the heme and active site residues, both drugs establish water-mediated contacts that stabilize the inhibitory complexes. PMSF also binds near the catalytic center, with the phenyl group parallel to the heme. However, it does not displace the water ligand and is held in place via strong H-bonds formed by the sulfofluoride moiety with Ser119 and Arg212. Collectively, our data suggest that PMSF might have multiple binding sites and likely occupies the high-affinity site in the crystal structure. Moreover, its hydrolysis product, phenylmethanesulfonic acid, can also access and be retained in the CYP3A4 active site. Therefore, to avoid experimental artifacts, PMSF should be excluded from purification and assay solutions.


Assuntos
Inibidores do Citocromo P-450 CYP3A/química , Inibidores do Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Inibidores do Citocromo P-450 CYP3A/farmacologia , Fluconazol/química , Fluconazol/metabolismo , Fluconazol/farmacologia , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Inativação Metabólica , Metirapona/química , Metirapona/metabolismo , Metirapona/farmacologia , Fluoreto de Fenilmetilsulfonil/química , Fluoreto de Fenilmetilsulfonil/metabolismo , Fluoreto de Fenilmetilsulfonil/farmacologia , Serina/química , Serina/metabolismo
19.
Neurosci Lett ; 696: 79-86, 2019 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30552944

RESUMO

The aim of the study was to evaluate the impact of second generation antiepileptic drug levetiracetam (LEV) with arachidonyl-2'-chloroethylamide (ACEA) on proliferating neural precursor cells in mouse brain. Additionally, we established the relationship between treatment with ACEA in combination with LEV and hippocampal neurogenesis in mouse brain. All experiments were performed on male CB57/BL mice injected i.p. with LEV (10 mg/kg), ACEA (10 mg/kg) and PMSF (30 mg/kg) for 10 days. Experiments were provided in two stages: stage 1- an acute response of proliferating neural precursor cells to ACEA and LEV administration (Ki-67 staining), stage 2 - a long term response to ACEA and LEV administration (BrDU, NeuN, GFAP staining). Results indicate that ACEA + PMSF and ACEA + PMSF + LEV significantly increased the total number of Ki-67 positive cells comparing to the control group. PMSF and LEV administered alone and in combination had no significant impact on cell proliferation compared to the control group. Results from neurogenesis study indicated that ACEA + PMSF administered alone and in combination with LEV increased the total number of BrDU cells compared to the control group, although LEV on its own decreased the number of BrDU cells. Moreover, the combination of ACEA + PMSF + LEV significantly increased the total number of newborn neurons compared to the control group. In turn, LEV significantly decreased the process of neurogenesis. Astrocytes were considerably reduced in all treated groups as compare to the control mice. These data provide substantial evidence that LEV administered chronically decreases the proliferation and differentiation of newly born cells while combination of LEV + ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.


Assuntos
Encéfalo/efeitos dos fármacos , Levetiracetam/agonistas , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Receptor CB1 de Canabinoide/agonistas , Animais , Anticonvulsivantes/farmacologia , Astrócitos/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Modelos Animais de Doenças , Eletrochoque/métodos , Masculino , Camundongos Endogâmicos C57BL , Fluoreto de Fenilmetilsulfonil/farmacologia , Ácido Valproico/farmacologia
20.
J Pharm Biomed Anal ; 153: 267-273, 2018 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29550043

RESUMO

An ultra-high pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was successfully developed and qualified for the simultaneous determination of triamcinolone hexacetonide (TAH) and triamcinolone acetonide (TAA, the active metabolite of TAH) in rabbit plasma. To prevent the hydrolysis of TAH to TAA ex vivo during sample collection and processing, we evaluated the effectiveness of several esterase inhibitors to stabilize TAH in plasma. Phenylmethanesulfonyl fluoride (PMSF) at 2.0 mM was chosen to stabilize TAH in rabbit plasma. The developed method is highly sensitive with a lower limit of quantitation of 10.0 pg/mL for both TAA and TAH using a 300 µL plasma aliquot. The method demonstrated good linearity, accuracy, precision, sensitivity, selectivity, recovery, matrix effects, dilution integrity, carryover, and stability. Linearity was obtained over the range of 10-2500 pg/mL. Both intra- and inter-run coefficients of variation were less than 9.1% and accuracies across the assay range were all within 100 ±â€¯8.4%. The run time is under 5 minutes. The method was successfully implemented to support a rabbit pharmacokinetic study of TAH and TAA following a single intra-articular administration of TAH (Aristospan®).


Assuntos
Plasma/química , Triancinolona Acetonida/análogos & derivados , Triancinolona Acetonida/sangue , Animais , Cromatografia Líquida de Alta Pressão/métodos , Inibidores Enzimáticos , Masculino , Fluoreto de Fenilmetilsulfonil/química , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...